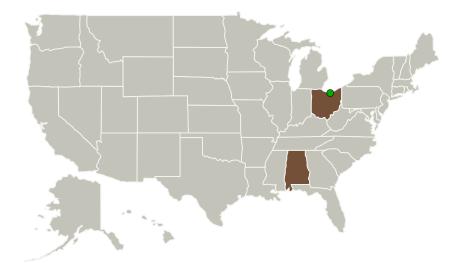
Improved Rhenium Thrust Chambers for In-Space Propulsion, Phase



Completed Technology Project (2011 - 2011)

Project Introduction

Radiation-cooled, bipropellant thrust chambers are being considered for the ascent/descent engines and reaction control systems (RCS) for future NASA missions such as Mars Sample Return. Currently, iridium-lined rhenium combustion chambers are the state-of-the-art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf rheniumiridium chamber produced by Plasma Processes, Inc. (PPI) and Aerojet, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, rhenium chambers with improved mechanical properties are needed, i.e., 40ksi yield strength and 10% elongation at room temperature. Recent electrochemical forming (EL-Form) work has shown considerable promise for improving the mechanical properties of rhenium by producing a multi-layered deposit comprised of a tailored microstructure, i.e., Engineered Re. In addition, the multi-component processing ability of the EL-Form process has the potential to significantly reduce the cost of producing advanced rhenium-iridium thrust chambers. Therefore, PPI and its industry partner, Aerojet, will work together to develop rhenium based in-space engines with improved mechanical properties at a reduced cost.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Improved Rhenium Thrust Chambers for In-Space Propulsion, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	
Organizational Responsibility	
Project Transitions	
Project Management	
Technology Maturity (TRL)	
Technology Areas	
Target Destinations	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Improved Rhenium Thrust Chambers for In-Space Propulsion, Phase

Completed Technology Project (2011 - 2011)

Primary U.S. Work Locations		
Alabama	Ohio	

Project Transitions

0

February 2011: Project Start

September 2011: Closed out

Closeout Summary: Improved Rhenium Thrust Chambers for In-Space Propuls ion, Phase I Project Image Improved Rhenium Thrust Chambers for In-Space Propulsion, Phase I

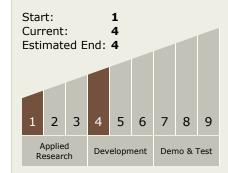
Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/140211)

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

John O'dell

Technology Maturity (TRL)

Technology Areas

Primary:

- - TXU1.2 Electric Spa Propulsion
 - □ TX01.2.1 Integrated Systems and Ancillary Technologies

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

